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Abstract—Laparoscopic surgery requires the surgeon to map
their motor (motion) space to a misaligned visual space. For
this reason, laparoscopic surgery requires spatial navigation
skills for proficiency. There are several training and simulation
methods to decrease the difficulty of learning these skills. As
artificial intelligence (AI) systems increase in sophistication and
prevalence, researchers are developing AI systems to assist in
laparoscopic surgery. The concern is that consistent use of AI
systems during training will limit the skills acquired and cause a
potentially unsafe reliance on AI systems. This study examined
naive participants learning and trying to improve at a simulated
laparoscopic surgical navigation task with no assistance, passive
assistance, or active assistance. The results of a small pilot study
suggested that all groups improved throughout the training
sessions. However, the data did not demonstrate a significant
reliance on AI assistance from the active assistance group,
indicating minimal impact on dependency.

I. INTRODUCTION

As artificial intelligence (AI) becomes more sophisticated
it is used for an increasing number of tasks that would
otherwise be performed by humans. This shift raises concerns
that greater reliance on AI could lead to the loss of important
cognitive and motor skills, as people practice these tasks
less often. Evidence of skill decline has been noted with
automated systems in fields such as aviation, where pilot
dependence on automation has correlated with decreased
manual proficiency during situations requiring direct inter-
vention [1], [2]. While there are operational distinctions
between automated systems, which follow pre-set rules, and
AI, which adapts and makes complex decisions, AI assistants
are designed to mimic cognitive skills to a much higher
degree [3]. Thus, compared to traditional automated systems,
AI assistants are more likely to result in skill degradation
since they offer fewer opportunities for users to actively
practice and retain their abilities [3]. To the best of our knowl-
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edge, no prior research have been conducted on AI assistants’
effects on users’ surgical skill retention and acquisition. This
paper focuses on the use of AI systems in laparoscopic
surgery and training simulations and how it may affect the
acquisition of spatial reasoning and navigation skills that are
essential to performing minimally invasive surgeries.

A. Spatial Navigation in Laparoscopic Surgery
In order to manipulate a laparoscope in manual laparo-

scopic surgery, the user needs to be able to map the visual
field to the motor workspace [5], [6]. As the laparoscope
is maneuvered there are various misalignments between the
visual and motor fields that arise, making moving in the
correct direction less intuitive. These misalignments must be
reconciled in the surgeon’s mental model of the workspace
to correctly understand the relative position and orientation
of the camera with respect to the motor workspace.

Rotational misalignments from rotating the probe along
its axis are challenging to mentally track. Rotating the scope
rotates the coordinate frame of the visual space, but not the
motor space, meaning that a movement along the axis in
the motor space will look like a movement along an angle
in the visual space. It is well documented that a rotational
misalignment decreases task performance across a variety of
spatial navigation tasks; performance deteriorates the most
when rotation approaches 90 degrees [7]. Bernatot found that
in 2D point to point tracking simulations errors occur the
most when there is a 90 or 270 degree mismatch between the
reference system and a moving object’s reference frame [8].
Blackmon et al. also found that in 3D reaching tasks a 90
degree rotational mismatch led to a significant decrease in
performance [9]. Fu et al. saw a decrease in performance of
a 3D Fitts task (point to point motion) for 90, 135, and 225
degree azimuth rotations [10].

B. Training Tools
There are several training tools used to develop spatial

navigation skills. These tools include simple box models used
to practice motor skills [11] and virtual reality simulators that
can replicate surgical scenarios with high levels of detail and
accuracy [12]. There are also robot-assisted surgery (RAS)
simulators designed for specific systems such as the da Vinci
surgical system [13].
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(a) The workspace.

(b) The main screen of the experiment.

Fig. 1: (a) The workspace of the experiment. (b) The screen
that the participants see.

There are also artificial intelligence assistants (AIAs) that
are in development. One form of assistance is guidance
virtual fixtures that provide haptic feedback to guide the user
in the correct direction [14] and [15]. Researchers are also
developing AIAs that can complete simple surgical tasks such
as suturing [16].

As more tools to decrease the cognitive load on users for
RAS and laparoscopic surgery are developed, there is a need
to examine the effects that using these tools in a training
environment may have on the acquisition of users’ skills.
While these forms of autonomy are still in development, it is
important to start considering regulatory and ethical frame-
works to manage risk [17]. AI is never completely reliable,
thus as these AIA systems become more and more common,
work needs to be done to determine how surgeons’ skills are
acquired when using and training with these systems. There
needs to be clarity on whether or not the user is gaining the
necessary skills or if they are relying on the AIA to bear the
cognitive load.

II. METHODS

In order to test whether or not skills are learned when using
AIAs during training, a basic surgical task was simulated
for naive participants. Participants had to complete a 3D
spatial navigation task similar to maneuvering a laparoscope.
The following human experiment protocol has been approved
by the Institutional Review Board of Case Western Reserve
University, where these experiments were performed.

A. Spatial Navigation Task

The navigation task was designed as a simulated surgical
task meant to mimic the spatial reasoning skills a surgeon

(a) Incomplete trial (b) Completed trial

Fig. 2: Completion criteria

needs to properly maneuver a laparoscopic camera. However,
the task was designed to be an abstraction of the laparoscopic
camera navigation task rather than a realistic simulation of a
surgical environment. As such, the task was not designed to
teach users skills to be used in real life laparoscopic surgery,
rather the experiment was designed to be similar so that it
tests the same skill, but without the real life context.

Specifically, in the proposed surgical navigation task, the
participants were asked to use their mouse and keyboard to
control a tool with a virtual camera at the end to view a circle
inside a box that was placed randomly in the workspace,
rather than maneuvering a camera in a patient to view a
specific anatomic structure. The tool was represented by a
long cylinder, and was placed in a “room” with 4 different
colored walls. The walls were different colors so the user
could keep track of where they were in space, even when
rotating the probe. The camera was placed at the end of the
tool with a 45 degree viewing angle and a 90 degree field
of view along the horizontal axis. Figure 1a shows the probe
and workspace. The white lines show the field of view of
the camera. Figure 1b shows the screen that the participants
saw during each trial. The large picture is the view that the
camera at the end of the probe sees.

To complete each trial the participants needed to position
the tool so that the entire target was visible in the camera
view as shown in Figure 2. Once the trial was completed,
the circle at the bottom blinked and the participant moved to
the next trial.

1) The Tool: The tool mimicked a 4 degrees-of-freedom
(DOF) laparoscope. The participants could control the pitch
(rotation about the side to side axis) and yaw (rotation
about the front to back axis) of the tool, as well as the
rotation about the tool’s long axis. The tool could also be
lengthened, mimicking inserting a laparoscope into a body
cavity (Figure 3a).

The challenge with controlling a tool like this is that there
are often misalignments between the motion and what is seen.
These are similar to the challenges presented by an actual la-
paroscope. The first misalignment is that the camera is placed
at a 45 degree angle so that the viewing direction is offset
from the direction of movement (Figure 3b). For example, if
the tool is extended one might expect to simply zoom in close
to an object, but instead, the field of view shifts. Another
challenge comes when rotating the tool about its own axis.
At the start of each trial, controlling the tool’s pitch and
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(a) Controls (b) Viewing direction

Fig. 3: (a) The mouse and keyboard controls manipulated the
4DOF tool. Adapted from [20]. (b) Camera points at an angle
of 45° off the tool’s axis.

yaw aligned with the participants’ perceived x and y axes,
however after rotating the tool this would no longer be the
case. A change in pitch, which would normally be perceived
as vertical motion, now seemed to be at an angle, or even
backwards due to the fact that the camera has rotated, but the
axes of motion have not. To overcome these difficulties, the
participants must develop a keen understanding of how the
tool is positioned and oriented, relative to the surrounding
environment.

2) Tool Movement Controls: In this study, a virtual repre-
sentation of the task was created where a mouse and keyboard
controlled the tool. This interface differs from how surgeons
typically manipulate a laparoscope, either manually (e.g., as it
was done in [18]) or with a robotic device. This mapping was
designed as an abstraction to focus on the spatial navigation
skills rather than replicating the exact surgical manipulation.
Use of such an abstract interface will also allow the full study
to be conducted remotely with a large number of participants.

The mouse controlled the rotation of the scope about
its pivot point. Moving the mouse forward and backward
tipped the tool forward and backward respectively. Moving
the mouse left and right similarly tipped the tool left and
right. The W and S keys extended and retracted the tool,
respectively and the A (counterclockwise) and D (clockwise)
keys rotated the tool about its own axis. The WASD keys
were used instead of the arrow keys to avoid identifying a
key with a particular direction.

3) Target Placement: Each target needed to be placed so
that there was at least one solution - a position from which the
entire circle could be viewed. To ensure this, a random probe
position was generated and the target placed at a distance
away from this position so it could be clearly viewed. This
position will be referred to as the ideal or optimal position.

(a) Passive AIA (b) Active AIA

Fig. 4: (a) Passive AIA: 3rd person point of view. (b) Active
AIA: Navigation guide.

B. Artificial Intelligence Assistants

Participants were split randomly into three groups. The first
group was a control group and received no assistance with the
task. The second group received guidance from a passive AI
assistant which gave extra information, but did not explicitly
tell the participant how to complete the task. The last group
used an active AI assistant which directed participants on
the necessary movements to complete each trial. The AI
assistants in this experiment were simulated representations,
designed to mimic potential future clinical AI tools rather
than AI systems used in real surgical environments. Graphics
showing the AIAs were placed in the bottom right corner of
the main screen, whereas the control group simply had blank
space, as shown in [21].

1) Passive AIA: The passive AIA was a static 3rd-person
point of view (POV) of the workspace. This represents an
AI reconstruction of what a surgical workspace might look
like based on the combination of imaging data and positional
and visual data from the laparoscopic camera. This is an
abstraction of an assistance paradigm similar to the one
proposed in [19].

For this experiment, this AI was implemented by placing
a virtual camera in the corner of the workspace. In the
layout shown in Figure 1b, the live camera feed, depicted
in Figure 4a, was displayed in the bottom right corner for
participants in the passive AIA group. This reconstruction
also showed the field of view of the main camera with a
white wire-frame. Using this AI, the participant could view
the 3D spatial configuration, where the tool was positioned,
and how it moved relative to what mouse movements were
done and what keys were pressed.

2) Active AIA: The active AIA was a navigation guide
where once the target was in view, the AI assistant could
determine the position and orientation of the target and thus
determine a point where the target could be viewed and plan
a path to that position and orientation. The navigation guide
was only activated after the participant had seen the box. This
is something that could be achieved clinically using imaging
data and positional data, thus serve as a feasible assistant.

The navigation guide operated similar to the virtual fixtures
mentioned in [14] and [15], but since there was no haptic
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feedback it was a visual guidance system as opposed to a
physical force guided system.

All of the variables were known and there were no obsta-
cles, so the ideal path was a linear path in the configuration
space of the robot. The path went from the current position
of the tool to the ideal position.

To implement this guide, the graphic shown in Figure 4b
was created, showing the current position of the mouse,
represented as a circle, and the ideal position of the mouse,
represented as an x. These were both shown on a 2D plane
with an x and y axis. There was also a graphic showing the
WASD keys. If one of these keys had been pressed to move
the tool to its ideal position, it would light up blue. In theory,
if this AIA functioned perfectly, a participant could look only
at the navigation guide and complete the task without looking
at the main screen and thus not learn the task at all. Similarly,
for the active AIA group, the layout in Figure 1b displayed
the navigation guide, depicted in Figure 4b, in the bottom
right corner.

3) AIA Imperfections: To account for the imperfections
inherent in real AI systems, errors were introduced. Both
the active and passive AI rely on correctly localizing the
position and orientation of the target, but it is unlikely that
an AI system could pinpoint the position and orientation
without any error. To simulate this, noise was introduced in
the perceived orientation of the target, such that the AI’s
perception of the target’s orientation was slightly rotated
relative to its actual position.

The amount of rotation was given by a normal distribution
with a mean of 0 degrees and a standard deviation of 15
degrees which was empirically chosen. For the passive AI
the field of view one might expect to see from the third
person point of view did not match up exactly with what
the participant saw in the main view. For the active AI,
the AI would guide the user to a position where they may
not see directly into the box, because the orientation was
not correctly perceived and thus the box was angled too
sharply to see the entire circle from the AI’s calculated ‘ideal
position’.

Since there is a range of positions to orient the probe to
successfully complete the task, the AI errors should only
hinder participants when there are large angles of error.

C. Study Design

For this experiment each participant was required to com-
plete 5 sessions during the day approximately 1 week apart
and each session lasts 1 hour long. These sessions included
4 training sessions and 1 test session. Each trial had a one
minute time limit, so that if the trial was not completed within
one minute the participant was automatically moved to the
next trial. This was done to avoid someone getting stuck on
one trial indefinitely.

For the first session, participants completed a demograph-
ics questionnaire, video game experience questionnaire, and
a spatial reasoning test. During this session participants also
read through the instructions (specific to the experimental
condition they were assigned), and completed 15 trials.

After the initial questionnaires, the participants were di-
rected to the online experimental platform. The participants
then read the instructions and completed a brief tutorial
to become familiar with the controls. They then completed
15 trials. For the second, third, and fourth sessions the
participants completed 60 trials per session. The first four
sessions constituted the learning phase, where participants
learned to perform the task either by themselves or with the
assistance of the given AIA.

The fifth session was an evaluation session where partic-
ipants completed 45 trials. No group received assistance for
this session. They were told that they should try to complete
each trial quickly and in a controlled fashion. Afterwards,
the subjects completed a short debrief questionnaire.

All participants completed the same trials in the same
order.

D. Implementation and Data Collection
The platform was created using Unity, a development

platform to create and run video games. Unity WebGL was
used to build the web application and Microsoft Azure was
used to host the web app.

All data from the trials were stored on Microsoft Azure.
All of the key presses and mouse movements were recorded,
as well as time, screen size, dpi, probe position, and probe
rotation. Whether or not the box was in view was recorded,
as well as whether or not the target was in view. The point
at which the target comes into view separates the search
phase (where the subject is simply looking for the box) and
the navigation phase (where the subject has located the box
and is moving towards it). There were many trials where
the target was immediately visible, thus having no search
phase at all. This distinction was made to separate when the
subject may be making random movements while looking
for the target, and when they are able to make intentional
movements towards the target.

III. RESULTS

These results are from a pilot study. A larger version of
the study will be completed later with a larger subject pool
to improve statistical power. Due to the small number of
subjects, statistical power is low. Thus, there are many trends
that are observed from the data, but few that can be supported
by statistical significance.

Twenty-four subjects (ages 18-25) completed the study.
The participants were split into 3 groups of 8. The first group
did not receive any assistance, the second group received
assistance from the passive AIA and the third group from
the active AIA.

Four measures of performance were used: path length in
configuration space, path length in the workspace, completion
time, and the number of corrective movements. All of these
metrics were tracked for each of the participants across all 5
sessions. The mean for each metric was computed for each
session for each participant. All of the metrics were only
calculated for the navigation phase of each trial.

In the box plots of the experimental results presented in
the subsequent subsections, the medians are marked by red
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Fig. 5: Path length in the workspace for each group.

lines, session means by blue dots, and outliers by red crosses.
Statistical significance is denoted as follows: ns (p > 0.05),
* (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001), and ****
(p ≤ 0.0001).

A. Path Length in the Workspace
The workspace path length incorporates the probe’s incre-

mental 3D displacement (x, y, z) and its rotation about the
probe’s axis θ, in degrees scaled by 1

18 , summed across all
individual navigation steps.

wsPathLength =
∑
i

√
∆x2

i +∆y2
i +∆z2i +

(
∆θi
18

)2

. (1)

The scaling coefficient of 1
18 was picked to match the ranges

of the displacement and angle variables in the workspace.
Each path length was normalized by the optimal path

length. This was determined to be the distance from the
point where the navigation phase started to the ideal viewing
position that was predetermined for each target, also using
coordinates in the workspace. This normalization was done so
that the difficulty of each trial did not affect the distribution
of path lengths.

Figure 5 shows the distributions of means across sessions
for each group. All three groups demonstrated significant
improvements across the first four sessions. During the test
session the passive AIA group had the lowest mean path
length (1.57 ± 0.28), outperforming the active AIA group
(2.75 ± 1.51, p < 0.05). No significant difference was ob-
served for the control group. Although the active AIA group
showed a slight decline in the test session, the difference was
not statistically significant (p > 0.05).

B. Path Length in Configuration Space

The configuration path length sums the changes in the
probe’s extension length, l, and rotational angles α (pitch),
β (yaw), and γ (roll), in degrees, with all angles scaled by
1
18 :

csPathLength =
∑
i

√(
∆α2

i +∆β2
i +∆γ2

i

182

)
+∆l2i . (2)

Fig. 6: Path length in configuration space for each group.

The scaling coefficient of 1
18 was picked to match the ranges

of the displacement and angle variables in the configuration
space.

All three groups improved throughout the training ses-
sions as seen in Figure 6. Path lengths in the workspace
significantly decreased for the control and passive AIA
groups (p < 0.05), while the active AIA group showed no
statistically significant change (p > 0.05) between sessions
1 and 4.

The passive AIA group continued to improve into the test
session. The active AIA group showed similar performance
between the final training session and the test session. The
passive AIA group had the shortest mean path length in
the test session (1.78 ± 0.49), compared to the control
(1.95 ± 0.29) and active AIA (2.59 ± 1.01) groups, though
these differences were not statistically significant (p > 0.05).

C. Completion Time

The completion time was measured as the time between
when the box first came into view until the trial was com-
pleted, normalized by the optimal path length of the trial in
configuration space. Thus, the completion time only includes
the navigation phase and is not dependent on the difficulty
of the trial.

As shown in Figure 7, all three groups had significant
decreases in mean completion times. The passive AIA group
performed the best throughout all the session, including the
test session. While significant differences were observed in
Sessions 1, 3, and 5 (p < 0.05), most sessions showed no
statistically significant differences among groups (p > 0.05).
The active AIA group had a slight decrease in performance
between the last training session and the test session, but there
was not enough statistical power to confirm this (p > 0.05).

D. Corrective Movements

Corrective movements are defined as the number of local
maxima of the acceleration and are a way to measure the
smoothness of the path. The workspace trajectory during
the navigation phase was used to calculate the acceleration,
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Fig. 7: Completion time for each group.

Fig. 8: Corrective movements for each group.

using the same scaling method with the angle of rotation
of the probe. Due to the fact that the key presses were one
way to change the trajectory, there were a lot of discrete
and jerky motions. In order to overcome this, a low pass
filter was applied to smooth the edges caused by these
discrete movements while retaining the overall shape of the
trajectory. The magnitude of the acceleration vector was
calculated and the peaks of this signal that were greater than
5 units/s2 were counted as corrective movements. As with the
above performance metrics, the mean number of corrective
movements was calculated per participant for each session.
The results are shown in Figure 8.

All three groups had noticeable and significant improve-
ment throughout the training sessions(p < 0.05). The passive
AIA group had the lowest corrective movements (19.84 ±
5.56), outperforming both active AIA (34.85 ± 22.98) and
control (19.84 ± 5.56) groups in the test session. However,
these differences were not statistically significant (p > 0.05).

IV. DISCUSSION

Despite the limited number of subjects, there are still many
interesting trends.

A. Learning

It is clear that each group improved at the task over
time. Each of the four metrics consistently showed the same
trends and improvements. Generally, path lengths decreased,
completion times decreased, and the number of corrective
movements decreased. This shows that the participants were
becoming both faster and more efficient with their move-
ments.

One interesting result is that the AI groups plateaued more
quickly than the control group meaning that participants
became proficient at the task more quickly when using the
AIAs. This means that the AIAs were indeed helping the
participants to complete the task in a quicker and more
efficient way.

Another result to note is that both the passive AIA group
and the control group performed better than the active AIA
group in the test session across all metrics. This could mean
that the active AIA group did not learn the task as well.
Another possible explanation is that the imperfections in
the active AIA had a greater negative effect on learning
performance than the imperfections in the passive AIA did.

It is important to note that the noise introduced to AIAs
were based on empirical choices rather than error probability
distributions of existing validated surgical AIA models. The
relative magnitudes of the noise terms may have influenced
the results, and this remains a limitation of the study.

B. Reliance on the AIA

Contrary to what was expected, there was no significant
reliance on the AIAs. In the passive AIA group, the partici-
pants seemed to perform the same, or even better in the test
session across all metrics. If this result is replicated with a
larger sample size in order to have sufficient statistical power,
this would indicate that the AIA helped them to learn to do
the task on their own, as there was no difference in their
performance with or without the AIA. The other possible
explanation is that they simply did not use the AIA at all, but
given that they consistently outperformed the control group,
this explanation seems unlikely.

In the active AIA group, there were trends in the
workspace path length, completion time, and corrective
movements that suggest there may have been some reliance
on the AIA, but this was not a very strong effect. It is possible
that the task was simply too easy and thus the active AIA
was not relied upon as much as expected.

V. CONCLUSION

This pilot study shows promise as a tool to track the
surgical skills acquisition of naive participants. Despite the
limited number of subjects, there were many clear trends
that were observed. There were also clear differences in
the performance between different groups. Executing this
study with a larger pool of participants and a slightly more
challenging task would provide an evaluation with sufficient
statistical power to better determine whether these differences
are real.
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[20] M.C. Çavuşoğlu, I. Villanueva, F.Tendick. ”Workspace analysis of
robotic manipulators for a teleoperated suturing task.” Proc. of the
IEE/RSJ International Conference on Intelligent Robots and Systems.
2001

[21] Medical Robotics and Computer Integrated Surgery (MeRCIS) Labo-
ratory, ”Spatial Navigation Pilot Study - Main Interface for Participant
Groups,” YouTube, March 2025. [Online]. Available: https://www.
youtube.com/watch?v=gxzcBdONeTA

142

Authorized licensed use limited to: Purdue University. Downloaded on June 18,2025 at 15:59:33 UTC from IEEE Xplore.  Restrictions apply. 


